We found in these solutions the presence of the following ions: $Mo_7O_{24}^{-6}$ ("paramolybdate of Delafontaine"), $Mo_6O_{20}^{-4}$ ("trimolybdate"), $Mo_6O_{20}H^{-3}$ ("tetramolybdate"). The paramolybdic ion of Rosenheim ($Mo_6O_{24}H^{-5}$) does not exist in detectable amount in these solutions.

Further details will be published in *J. Chim. Phys.* or may be found in the author's thesis, 'Contribution à l'étude de l'électrode à quinhydrone: application à la détermination des isopolyanions molybdiques.''

Ecole Nationale Superieure de J. P. Schwing Chimie de Strasbourg Universite de Strasbourg Strasbourg, France

Received February 24, 1964

Total Syntheses of N^{α} . [1-(2·Acetamido-3-O-D-glucosyl)-D·propionyl-L-alanyl-D- α - and γ -glutamyl]-L-lysyl-D-alanyl-D-alanine, and Identity of the γ -Glutamyl Isomer with the Glycopeptide of a Bacterial Cell Wall Precursor

Sir:

Accumulation of uridine nucleotides in a Staphylococcus aureus was observed¹ to occur when its growth was inhibited by penicillin. On the basis of degradation^{2,3} and enzymatic synthesis⁴ the principal compound, containing the amino sugar muramic acid [2-amino-3-O-(D-1-carboxyethyl)-2-deoxy-D-glucose],^{5,6} was assigned the structure, uridine-5'-pyrophosphoryl-N-acetylmuramyl-L-alanyl-D-glutamyl-L-lysyl-D-alanyl-D-alanine. Further characterization of the nucleotide from penicillin-treated cells⁷ and from enzymatic synthesis^{4d} provided evidence for the N^{α} - γ -glutamyllysyl peptide linkage. The glycopeptide formed by mild acid hydrolysis^{1c,4b} of the uridine nucleotide may then be completely formulated as II.

We wish to record total synthesis of N^{α} -[1-(2-acetamido-3-O-D-glucosyl)-D-propionyl-L-alanyl-D- α - and γ glutamyl]-L-lysyl-D-alanyl-D-alanine (I and II), and to report that the γ -glutamyl isomer II is identical with the glycopeptide of a bacterial cell wall precursor, as shown by two-dimensional paper chromatography.

H- N^{ϵ} -Z-L-Lys-OH^{8,9} (Na salt) and *t*-butylazidoformate¹⁰ in refluxing aqueous *t*-butyl alcohol gave N^{α} -*t*-BOC- N^{ϵ} -Z-L-Lys-OH as a colorless viscous oil which, esterified¹¹ with *p*-nitrophenol and N, N'-dicyclohexylcar-

(1) (a) J. T. Park, J. Biol. Chem., 194, 877 (1952);
 (b) J. T. Park, ibid., 194, 885 (1952);
 (c) J. T. Park, ibid., 194, 897 (1952).

(2) J. L. Strominger, Compt. rend. trav. lab. Carlsberg, 31, 181 (1959).

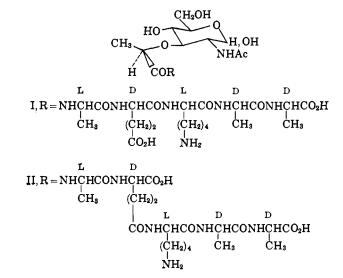
(3) J. T. Park and J. L. Strominger, Science, 125, 99 (1957)

(4) (a) E. Ito and J. L. Strominger, J. Biol. Chem., 235, PC 5 (1960);
(b) E. Ito and J. L. Strominger, *ibid.*, 237, 2689 (1962);
(c) E. Ito and J. L. Strominger, *ibid.*, 239, 2696 (1962);
(d) E. Ito and J. L. Strominger, *ibid.*, 239, 210 (1964).

(5) R. E. Strange and L. H. Kent, Biochem. J., 71, 333 (1959).

(6) Y. Matsushima and J. T. Park, J. Org. Chem., 27, 3581 (1962), and references cited therein.

(7) M. H. Mandelstam and J. L. Strominger, Biochem. Biophys. Res. Commun., 5, 466 (1961).


 $(8)\,$ M. Bergmann, L. Zervas, and W. F. Ross, J. Biol. Chem., 111, 245 (1935).

(9) The following abbreviations are employed: Ala = alanine, Glu = glutamic acid, Lys = lysine, t-BOC = t-butoxycarbonyl, BZ = benzyl, NBZ = p-nitrobenzyl, NP = p-nitrophenyl, Z = benzyloxycarbonyl,

DMF = N, N-dimethylformamide.

(10) L. A. Carpino, C. A. Giza, and B. A. Carpino, J. Am. Chem. Soc., 81, 955 (1959).

(11) M. Bodansky and V. du Vigneaud, ibid., 81, 5688 (1959).

bodiimide, gave N^{α} -*t*-BOC- N^{ϵ} -Z-L-Lys-ONP¹²(III), m.p. 83–85°, $[\alpha]^{24}$ D –23.6° (*c* 2.0, DMF). Condensation of activated ester III with H-D-Ala-D-Ala-ONBZ¹³ gave N^{α} -*t*-BOC- N^{ϵ} -Z-L-Lys-D-Ala-D-Ala-ONBZ (IV), m.p. 124–125°, $[\alpha]^{24}$ D +9.5° (*c* 2.0, DMF). Selective removal (HCl + HOAc^{14,15}) of the *t*-BOC group from tripeptide IV yielded H- N^{ϵ} -Z-L-Lys-D-Ala-D-Ala-ONBZ ·HCl·H₂O (V), m.p. 158–159°, $[\alpha]^{25}$ D +37.8° (*c* 2.8, DMF).

t-BOC-(γ -OBZ)-D-Glu-OH, obtained as a colorless viscous oil from γ -benzyl D-glutamate,¹⁶ was esterified with *p*-nitrophenol to yield *t*-BOC-(γ -OBZ)-D-Glu-ONP (VI), m.p. 120–121°, $[\alpha]^{25}$ D 32.3° (*c* 2, DMF). Condensation of activated ester VI with tripeptide derivative V in DMF, with addition of one equivalent of triethylamine, gave N^{α} -[*t*-BOC-(γ -OBV)-D- α -Glu]- N^{ϵ} -Z-L-Lys-D-Ala-D-Ala-ONBZ·0.25H₂O (VII), m.p. 145–147°, $[\alpha]^{25}$ D +13.8° (*c* 2.1, DMF). Removal (HCl + HOAc) of the *t*-BOC group from tetrapeptide derivative VII afforded N^{α} -[H-(γ -OBZ)-D- α -Glu]- N^{ϵ} -Z-L-Lys-D-Ala-D-Ala-ONBZ·HCl·0.5H₂O (VIII), m.p. 123–124° dec., $[\alpha]^{24}$ D –9.1° (*c* 2, DMF).

t-BOC-L-Ala-ONP (IX), m.p. 82–83, $[\alpha]^{25}D - 60.5^{\circ}$ (c 2, ethanol), obtained by esterification of t-BOC-L-Ala-OH,¹⁵ was condensed with tetrapeptide derivative VIII to yield N^{α} -[t-BOC-L-Ala-(γ -OBZ)-D- α -Glu]- N^{ϵ} -Z-L-Lys-D-Ala-D-Ala-ONBZ $\cdot 0.5H_2O$ (X), m.p. 181– 182° dec., $[\alpha]^{25}D + 22.5^{\circ}$ (c 2, DMF). The latter pentapeptide derivative gave, with HCl + HOAc, N^{α} -[H-L-Ala-(γ -OBZ)-D- α -Glu]- N^{ϵ} -Z-L-Lys-D-Ala-D-Ala-ONBZ \cdot HCl \cdot H₂O (XI), m.p. 194–195° dec., $[\alpha]^{25}D$ +19.6°.

Benzyl 2-acetamido-4,6-O-benzylidene-3-O-(D-1-carboxyethyl)-2-deoxy- α -D-glucopyranoside¹⁷ (XII) was condensed in acetonitrile with pentapeptide XI (with addition of one equivalent of triethylamine) by means of N-ethyl-5-phenylisoxazolium-3'-sulfonate¹⁸ to afford

- (13) H. C. Garg, M. C. Khosla, and N. Anand, J. Sci. Ind. Res. (India), **21B**, 286 (1962).
- (14) F. C. McKay and N. F. Albertson, J. Am. Chem. Soc., 79, 4686 (1957).

(15) G. W. Anderson and A. C. McGregor, *ibid.*, 79, 6180 (1957).

(16) W. E. Hanby, S. G. Waley, and J. Watson, J. Chem. Soc., 3239 (1950).

(17) H. M. Flowers and R. W. Jeanloz, J. Org. Chem., 28, 2983 (1963).

(18) R. B. Woodward, R. A. Olofson, and H. Mayer, J. Am. Chem. Soc. 83, 1010 (1961).

⁽¹²⁾ Unless otherwise noted, all compounds were obtained as colorless crystals; satisfactory analyses were obtained for these compounds.

the D- α -glutamyl isomer of the fully protected N-acetylmuramyl pentapeptide, N^{α} -[1-(2-acetamido-1-O-benzyl 4,6-O-benzylidene-2-deoxy-3-O-D-glucopyranosyl)-Dpropionyl-L-Ala-(γ-OBZ)-D-α-Glu]-N^e-Z-L-Lys-D-Ala-D-Ala-ONBZ H₂O (XIII), m.p. 211–214° dec., $[\alpha]^{25}$ D $+58.5^{\circ}$ (c 1, DMF). Hydrogenolysis (H₂/Pd black/ 10% Pd-C/85% HOAc) of XIII, and purification of the resulting product by means of column chromatography on Celite diatomaceous earth, yielded with 4.5 holdback volumes (H.B.V.) of butanol-acetic acid-water (6:1:4) the D- α -glutamyl isomer I of the Nacetylmuramyl pentapeptide as a colorless hygroscopic amorphous solid which sinters at 105°, m.p. 145-148° dec., $[\alpha]^{25}D + 33.6^{\circ}$ (c 1.3, water). Anal. Calcd. for $C_{31}H_{53}N_7O_{15} \cdot 2.5H_2O$: C, 46.1; H, 7.23; N, 12.1. Found: C, 46.1; H, 7.18; N, 12.2.

α-Benzyl D-glutamate,¹⁹ t-butylazidoformate, and sodium carbonate in refluxing aqueous dioxane gave t-BOC-D-Glu-OBZ as a colorless oil which was esterified with p-nitrophenol to yield t-BOC-(γ-ONP)-D-Glu-OBZ (XIV), m.p. 101–102°, $[\alpha]^{25}D + 22.2°$ (c 2.5, DMF). Activated ester XIV was condensed with tripeptide derivative V to yield N^{α} -[t-BOC-(α -OBZ)-D- γ -Glu]- N^{ϵ} -Z-L-Oys-D-Ala-D-Ala-ONBZ (XV), m.p. 174–175°, $[\alpha]^{25}D + 16.7°$ (c 2.5, DMF). Removal of the t-BOC group from XV (HCl + HOAc) afforded N^{α} -[H-(α -OBZ)-D- γ -Glu]- N^{ϵ} -Z-L-Lys-D-Ala-D-Ala-ONBZ ·HCl· 0.5H₂O (XVI), m.p. 141–142° dec., $[\alpha]^{25}D + 5.5°$ (c 2, DMF).

Condensation of activated alanine ester IX with tetrapeptide ester XVI yielded N^{α} -[t-BOC-L-Ala-(α -OBZ)-D- γ -Glu]- N^{ϵ} -Z-L-Lys-D-Ala-D-Ala-ONBZ (XVII), m.p. 187–188° dec., $[\alpha]^{25}$ D +11.0° (c 2, DMF). Removal (HCl + HOAc) of the t-BOC group from XVII afforded N^{α} -[H-Ala-(α -OBZ)-D- γ -Glu]- N^{ϵ} -Z-L-Lys-D-Ala-D-Ala-ONBZ·HCl·H₂O (XVIII), m.p. 153–154° dec., $[\alpha]^{23}$ D +24.2° (c 2, DMF).

The base from pentapeptide salt XVIII was condensed with protected muramic acid XII by means of *N*ethyl-5-phenylisoxazolium-3'-sulfonate in acetonitrile to yield the D- γ -glutamyl isomer of the fully protected muramyl pentapeptide, N^{α} -[1-(2-acetamido-1-*O*-benzyl 4,6-*O*-benzylidene-2-deoxy-3-*O*-D-glucopyranosyl)-Dpropionyl-L-Ala-(α -OBZ)-D- γ -Glu]- N^{\bullet} -Z-L-Lys-D-Ala-D-Ala-ONBZ (XIX), m.p. 215–218° dec., $[\alpha]^{25}$ D +46.9° (*c* 1, acetic acid). Hydrogenolysis of XIX and chromatography as for XIII afforded (with 7.9 H.B.V.) the D- γ glutamyl isomer II of the *N*-acetylmuramyl pentapeptide as a colorless, hygroscopic, amorphous solid, m.p. 148–150° dec., $[\alpha]^{25}$ D +14.0° (*c* 0.9, water). *Anal.* Calcd. forC₈₁H₅₈N₇O₁₅·H₂O: C, 47.6; H, 7.09; N, 12.5. Found: C, 47.5; H, 7.25; N, 12.5.

Two-dimensional paper chromatography was employed to compare isomers I and II with enzymatically synthesized glycopeptide (kindly carried out by Anderson and Strominger²⁰).^{20a} A single radioactive and ninhydrin-positive spot was obtained when γ -glutamyl isomer II and *N*-acetylmuramyl-L-alanyl-D-glutamyl-¹⁴C- L-lysyl-D-alanyl-D-alanine (XX) (obtained²¹ by the action of venom phosphodiesterase and alkaline phosphatase on uridine-5'-pyrophosphoryl-N-acetylmuramyl-L-alanyl-D-glutamyl-¹⁴-C-L-lysyl-D-alanyl-D-alanine²²) were cochromatographed on paper with isobutyric acid:0.1 *M* ammonium hydroxide (5:3) (solvent A) used for the first dimension and pyridine: water (4:1) (solvent B) for the second. The α -glutamyl isomer I was more mobile than the labeled glycopeptide with the ratio of mobilities of $\gamma/\alpha = 0.83$ in solvent A and 0.97 in solvent B.

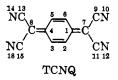
 N^{α} -(L-Alanyl-D- γ -glutamyl)-L-lysyl-D-alanyl-D-alanine (obtained by hydrogenolysis of fully protected pentapeptide XVII) was cochromatographed on paper with L-alanyl-D-glutamyl-¹⁴C-L-lysyl-D-alanyl-D-alanine (obtained²¹ by the action of acetylmuramyl-L-alanine amidase²³ on the ¹⁴C-labeled N-acetylmuramyl pentapeptide XX), and was clearly differentiated from N^{α} -(L-alanyl-D- α -glutamyl)-L-lysyl-D-alanyl-D-alanine (obtained by hydrogenolysis of the corresponding protected pentapeptide). The ratio of mobilities of γ/α was 0.77 in solvent A and 0.60 in solvent B.

Acknowledgment.—We wish to thank Drs. J. S. Anderson and J. L. Strominger²⁰ for paper chromatographic comparisons of their enzymatically synthesized compounds with I, II, and the corresponding pentapeptides, Mr. L. Brancone and staff for microanalyses, Mr. W. Fulmor and staff for optical rotation measurements, Mr. J. W. Marsico for paper chromatography, and Mr. C. Pidacks for column chromatography.

(21) J. S. Anderson and J. L. Strominger,²⁰ private communication.

(22) P. M. Meadow, J. S. Anderson, and J. L. Strominger, Biochem. Biophys. Res. Commun., 14, 382 (1964).

(23) J. M. Ghuysen and J. L. Strominger, Biochemistry, 2, 1110 (1963).


Organic Chemical Research Section	A. E. Lanzilotti
LEDERLE LABORATORIES DIVISION	E. Benz
American Cyanamid Company	L. Goldman
PEARL RIVER, NEW YORK	

RECEIVED MARCH 2, 1964

C¹³ Hyperfine Splittings in the 7,7,8,8-Tetracyanoquinodimethane Anion Radical

Sir:

We have measured the C¹³ hyperfine splittings of the 7,7,8,8-tetracyanoquinodimethane (TCNQ) anion radical in which C¹⁸ was substituted in positions 1 (4) and 9 (11, 13, 15). Our results (Table I) show (1) that the

C¹⁸ splittings calculated from simple Hückel-LCAO or McLachlan¹ theory and the $\sigma-\pi$ parameters of Fraenkel, *et al.*,^{2,3} are not in very good agreement with experiment and (2) that previous assignments⁴ based

⁽¹⁹⁾ H. Sachs and E. Brand, J. Am. Chem. Soc., 75, 4610 (1953).

⁽²⁰⁾ Department of Pharmacology, University of Wisconsin Medical School, Madison, Wis.

⁽²⁰a) NOTE ADDED IN PROOF.—Identity of the acetylmuramyl pentapeptide and the pentapeptide from enzymatically prepared nucleotide with the D- γ -glutamyl isomer 11 and N^{α} -(L-alanyl-D- γ -glutamyl)-L-lysyl-D-alanyl-Dalanine was also established by means of a paper electrophoresis on Whatman 3MM paper in 0.18 *M* pyridine acetate buffer of pH 4.1 at a potential gradient of 16 volts/cm, at 0° for 5 hr.

⁽¹⁾ A. D. McLachlan, Mol. Phys., 3, 233 (1960).

⁽²⁾ M. Karplus and G. K. Fraenkel, J. Chem. Phys., 35, 1312 (1961).

⁽³⁾ P. H. Rieger and G. K. Fraenkel, ibid., 37, 2795 (1963).

⁽⁴⁾ P. H. H. Fischer and C. A. McDowell, J. Am. Chem. Soc., 85, 2694 (1963).